Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS One ; 16(7): e0253022, 2021.
Article in English | MEDLINE | ID: covidwho-1308177

ABSTRACT

Influenza and RSV are human viruses responsible for outbreaks in hospitals, long-term care facilities and nursing homes. The present study assessed an air treatment using ozone at two relative humidity conditions (RHs) in order to reduce the infectivity of airborne influenza. Bovine pulmonary surfactant (BPS) and synthetic tracheal mucus (STM) were used as aerosols protectants to better reflect the human aerosol composition. Residual ozone concentration inside the aerosol chamber was also measured. RSV's sensitivity resulted in testing its resistance to aerosolization and sampling processes instead of ozone exposure. The results showed that without supplement and with STM, a reduction in influenza A infectivity of four orders of magnitude was obtained with an exposure to 1.70 ± 0.19 ppm of ozone at 76% RH for 80 min. Consequently, ozone could be considered as a virucidal disinfectant for airborne influenza A. RSV did not withstand the aerosolization and sampling processes required for the use of the experimental setup. Therefore, ozone exposure could not be performed for this virus. Nonetheless, this study provides great insight for the efficacy of ozone as an air treatment for the control of nosocomial influenza A outbreaks.


Subject(s)
Influenza A virus/drug effects , Ozone/pharmacology , Respiratory Syncytial Viruses/drug effects , Virus Inactivation/drug effects , Aerosols , Air Microbiology , Cross Infection/prevention & control , Disinfection/methods , Humans , Influenza, Human/prevention & control , Ozone/administration & dosage , Real-Time Polymerase Chain Reaction , Respiratory Syncytial Virus Infections/prevention & control
2.
Front Public Health ; 9: 643724, 2021.
Article in English | MEDLINE | ID: covidwho-1221992

ABSTRACT

The SARS-CoV-2 pandemic has created a troublesome issue for employees in biochemistry clinical laboratories due to fears of aerosol generation during sample treatment. This study was designed to assess aerosol production during the pre-analytical procedures for blood and urine samples using a model bacterium. Air sampling and surface swabbing were conducted during four typical procedures. Bacteria were not recovered in any air or surface samples. Other studies have reported low and undetectable SARS-CoV-2 RNA in blood and urine samples, respectively. Therefore, the occupational risk for employees appears to be low in terms of aerosol exposure from processing SARS-CoV-2 patient samples.


Subject(s)
COVID-19 , Pandemics , Aerosols , Hospitals , Humans , RNA, Viral , SARS-CoV-2
3.
Am J Infect Control ; 49(6): 701-706, 2021 06.
Article in English | MEDLINE | ID: covidwho-1081407

ABSTRACT

BACKGROUND: Long-term care facilities (LTCF) are environments particularly favorable to coronavirus disease (SARS-CoV-2) pandemic outbreaks, due to the at-risk population they welcome and the close proximity of residents. Yet, the transmission dynamics of the disease in these establishments remain unclear. METHODS: Air and no-touch surfaces of 31 rooms from 7 LTCFs were sampled and SARS-CoV-2 was quantified by real-time reverse transcription polymerase chain reaction (RT-qPCR). RESULTS: Air samples were negative but viral genomes were recovered from 20 of 62 surface samples at concentrations ranging from 13 to 36,612 genomes/surface. Virus isolation (culture) from surface samples (n = 7) was negative. CONCLUSIONS: The presence of viral RNA on no-touch surfaces is evidence of viral dissemination through air, but the lack of airborne viral particles in air samples suggests that they were not aerosolized in a significant manner during air sampling sessions. The air samples were collected 8 to 30 days after the residents' symptom onset, which could indicate that viruses are aerosolized early in the infection process. Additional research is needed to evaluate viral viability conservation and the potential role of direct contact and aerosols in SARS-CoV-2 transmission in these institutions.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Humans , Long-Term Care , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL